Lateral drill holes decrease strength of the femur: an observational study using finite element and experimental analyses
نویسندگان
چکیده
BACKGROUND Internal fixation of femoral fractures requires drilling holes through the cortical bone of the shaft of the femur. Intramedullary suction reduces the fat emboli produced by reaming and nailing femoral fractures but requires four suction portals to be drilled into the femoral shaft. This work investigated the effect of these additional holes on the strength of the femur. METHODS Finite element analysis (FEA) was used to calculate compression, tension and load limits which were then compared to the results from mechanical testing. Models of intact femora and fractured femora internally fixed with intramedullary nailing were generated. In addition, four suction portals, lateral, anterior and posterior, were modelled. Stresses were used to calculate safety factors and predict fatigue. Physical testing on synthetic femora was carried out on a universal mechanical testing machine. RESULTS The FEA model for stresses generated during walking showed tensile stresses in the lateral femur and compression stresses in the medial femur with a maximum sheer stress through the neck of the femur. The lateral suction portals produced tensile stresses up to over 300% greater than in the femur without suction portals. The anterior and posterior portals did not significantly increase stresses. The lateral suction portals had a safety factor of 0.7, while the anterior and posterior posts had safety factors of 2.4 times walking loads. Synthetic bone subjected to cyclical loading and load to failure showed similar results. On mechanical testing, all constructs failed at the neck of the femur. CONCLUSIONS The anterior suction portals produced minimal increases in stress to loading so are the preferred site should a femur require such drill holes for suction or internal fixation.
منابع مشابه
An investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests
The geometric optimization of orthopedic screws can considerably increase their orthopedic efficiency. Due to the high geometric parameters of orthopedic screws, a finite element simulation is an effective tool for analyzing and forecasting the effect of the parameters on the load-bearing capacity of different types of screws and bones. Thus, in the present study, the tensile strength of a typi...
متن کاملExperimental and Numerical Study of Perforated Steel Plate Shear Panels
Thin perforated Steel Plate Shear (SPS) Walls are among the most common types of energy dissipating systems. The applied holes reduce the shear strength of the plate and allow to decrease the profile size of the members at the boundary of the panel when these systems are used in the typical design of structures. On the other hand, the different fracture locations of these panels are visible whe...
متن کاملThe effect of discrete lateral and torsional bracings stiffness on the elastic lateral-torsional buckling of mono-symmetric I beam, under the concentrated moment
When the out-of-plane stiffness of a beam is remarkably lower than the in-plane stiffness, the lateral-torsional buckling occurs. In this study, the behavior of mono-symmetric I-beams with discrete torsional and lateral bracings under the concentrated moment is investigated using the finite element analyses. Then, based on the numerical analyses, equation for the stiffness requirement is propos...
متن کاملبررسی تأثیر محصورشدگی بتن در رفتار غیرخطی دیوارهای برشی بتنآرمه بالدار
Flanged shear walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. They must be carefully designed to provide not only adequate strength, but also sufficient ductility to avoid brittle failure under strong lateral lo...
متن کاملNonlinear Finite Element Modeling of Different Cross-Sectional Shapes of Slender RC Columns Confined with CFRP Wraps
In the present study, non-linear finite element analyses are carried out on the slender reinforced concrete columns wrapped using CFRP composite with different cross-sectional shapes having the same area. Thickness of the CFRP wraps, concrete compressive strength, corner radius, loading condition, slenderness ratio and column size are the main parameters of this study. According to this, four d...
متن کامل